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Preface

Determining the appropriate treatment regime to provide safe drinking water for 
customers continues to challenge drinking water purveyors. Source water quality is 
becoming more compromised as global demand increases, high-quality sources are 
depleted, and improvements in analytical methods reveal increasingly lower concen-
trations of contaminants in treated water. Regulatory agencies struggle with adequate 
resources to make sound scientific judgments regarding safe levels of contaminants in 
drinking water while media reports of detected levels of chemicals and microbes leave 
customers apprehensive about the safety of what comes out of their faucets every day.

Maintaining microbiological quality continues to be a cornerstone of water treat-
ment as reinforced by the unfortunate incidence of waterborne disease in impoverished 
and developing nations. Nevertheless, conventional disinfectants used effectively in 
treatment for more than a century produce by-products that may have long-term 
chronic health effects, and sources degraded by anthropogenic inputs increase the 
portfolio of chemical contaminants that must be addressed. Personal care products 
and pharmaceuticals in drinking water are reported with increasing frequency in the 
global media, while the effects on humans remain unresolved.

Through all of this uncertainty, proactive measures that can reduce a wide variety 
of contaminants to low concentrations through multi-objective treatment remain an 
important element of robust and reliable drinking water production. Activated car-
bon, one of the oldest treatment technologies, is once again demonstrating its value 
in these challenging times. Activated carbon is simple to operate as an adsorption 
medium, serves as a proactive barrier for contamination, and does not produce by-
products from its use. It can be reactivated and reused. And it removes compounds 
that customers can perceive with their senses—taste-and-odor compounds—as well 
as reduces a suite of potentially harmful chemical contaminants to low concentrations.

Many books have been written about granular activated carbon. Some focus on 
the theory of performance and removal mechanisms while others focus on design 
features. This book focuses on solutions. It describes the challenges facing water pro-
viders to provide safe water that is acceptable to their customers, utility experiences 
using activated carbon, activated carbon applications, and design and procurement 
approaches. The appendices include detailed case studies and a life-cycle assessment 
demonstrating favorable sustainability considerations for activated carbon when com-
pared to other treatment technologies.

Never before has all of this information been together in one location. The what, 
why, and how of activated carbon are connected in this book and demonstrate why 
this treatment technology has maintained its status as an integral treatment technol-
ogy in the quest for pure water over millennia. 

Enjoy the story!
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Introduction

Water purveyors throughout the globe have been, and continue to be, challenged to 
support existing and growing populations with an adequate and safe water supply. 
Historically, communities developed where water supplies were available and abun-
dant. For example, the settlements resulting from the westward migration in the 
United States in the 1800s were often determined according to where water supplies 
were found. Now, however, there are few new locations where safe water supplies are 
available and abundant, either in the United States or globally. Instead, the challenge 
of maintaining and protecting drinking water supplies from further degradation is 
high on the minds of water purveyors and environmentally minded individuals and 
groups. Existing supplies continue to be threatened by microbiological and chemical 
contaminants introduced by increasing populations and associated economic devel-
opment as well as by natural sources of contamination.

Water scarcity is a constant area of concern in major metropolitan areas in arid 
regions, and climate change is affecting how regions that previously had sufficient 
resources view their supplies into the future. These scarcity issues are driving water 
purveyors to use lower-quality water sources to meet increasing demand. At the same 
time, improved analytical techniques are able to detect compounds at lower and lower 
concentrations, either revealing contaminants that previously had not been detected or 
indicating the presence of contaminants that have been recently introduced into the 
water supply. Although health effects of many of these micropollutants are not cur-
rently known and may not be known for decades or longer, consumers are rightfully 
concerned about their presence in drinking water, and water purveyors must respond.

In the fundamental charge to protect public health, water purveyors rely on a 
combination of treatment and watershed protection to meet water quality goals and 
regulations. In meeting these goals, water purveyors should consider both the quantity 
and quality of the supply and choose suitable treatment approaches. The approaches 
are often a combination of physical, chemical, adsorption, and biological processes. 
The challenge is to determine the best combination of processes that protect public 
health and meet customer desires and regulatory requirements for water quality while 
doing so in a financially responsible manner.

The Case for Activated Carbon
Activated carbon is an adsorption medium and its use is considered an advanced 
technique for meeting many water quality demands. Treatment with activated carbon 
is not new and has in fact been used for thousands of years to improve the quality of 
drinking water. It has been used in various forms (powdered and granular) around the 
globe in a multi-objective manner, removing heterogeneous compounds that produce 
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color and are precursors to contaminants upon disinfection, trace organic and inor-
ganic contaminants, and taste-and-odor compounds. Activated carbon also has the 
flexibility to be operated in both adsorption and biological modes. In the latter, it 
provides a large surface area for organisms to populate and biologically degrade con-
taminants. Utilities may implement activated carbon for several reasons, including 
regulatory compliance, positioning for future regulations, public health protection 
and customer confidence, and sustainability considerations. 

Compliance With Existing Regulations
For most water systems, the biggest driver for implementing activated carbon treat-
ment is to gain compliance with water quality regulations. The US Congress origi-
nally passed the Safe Drinking Water Act (SDWA) in 1974 to protect public health 
by regulating the nation’s public drinking water supplies. The law was subsequently 
amended in 1986 and 1996. The two categories of drinking water standards in the 
SDWA are: 

1. Primary Standards: Legally enforceable standards that limit the levels of spe-
cific hazardous contaminants having an adverse effect on human health.

2. Secondary Standards: Nonenforceable guidelines for nonhazardous contami-
nants that may cause cosmetic effects (such as skin or tooth discoloration) or 
aesthetic effects (such as taste, odor, or color) in drinking water. USEPA rec-
ommends secondary standards to water systems but does not require systems 
to comply unless the state chooses to require compliance.

Several individual regulations fall under the umbrella of the SDWA. The follow-
ing components are most likely to influence a water purveyor’s decision to implement 
activated carbon.

Disinfectants and Disinfection By-products (D/DBP) Rule
For more than 100 years, the practice of disinfecting drinking water using chlorine 
and its compounds has protected consumers from waterborne diseases by inactivating 
pathogens. However, disinfectants react with organic matter in the water supply, and 
many of the by-products formed are of concern to public health. The primary objec-
tive of the D/DBP Rule, which was promulgated in two stages, is to reduce exposure 
of drinking water consumers to DBPs such as total trihalomethanes (TTHMs), the 
sum of five haloacetic acids (HAA5), bromate, and chlorite while still providing ade-
quate disinfection. The rule also contains requirements for removing DBP precursors, 
as demonstrated by total organic carbon (TOC) removal using a treatment technique 
termed enhanced coagulation, which means achieving additional TOC removal by 
adding increased amounts of coagulant over what is required for turbidity removal.

To adequately protect public health from many waterborne diseases, the practice 
of disinfection must be continued. Activated carbon helps water purveyors comply 
with the D/DBP Rule by providing an additional removal mechanism for TOC. 
Because TOC is a major contributor to TTHM and HAA formation upon chlorina-
tion, reducing the TOC will also reduce the formation potential of these DBPs.

Enhanced Surface Water Treatment Rule
The Enhanced Surface Water Treatment Rule (ESWTR) also has two stages, cor-
responding to the two stages of the D/DBP Rule. The objective of the ESWTR is to 
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confirm that disinfection is not compromised by utilities in their effort to minimize 
DBP formation. Compliance is demonstrated by providing treatment processes that 
remove or inactivate microorganisms. The final stage of this rule, the Long-Term 2 
Enhanced Surface Water Treatment Rule, requires additional removal or inactivation 
of Cryptosporidium, depending on the source water quality. The USEPA’s treatment 
toolbox for Cryptosporidium grants 0.5 log removal when granular activated carbon 
(GAC) filters or contactors are placed in series with another filtration process (granu-
lar media or membrane).

Unregulated Contaminant Monitoring Rule (UCMR)  
and Contaminant Candidate List (CCL)
The CCL is used by USEPA to identify contaminants that may be regulated in future, 
and the UCMR is used to gather data on the occurrence of unregulated contami-
nants in drinking water systems. Although there are no enforceable standards for 
UCMR contaminants, data are collected and reported to USEPA to assist with future 
regulatory policymaking. The first CCL was published in March 1998 and contained 
60 contaminants under regulatory consideration. Based on the data from the first 
monitoring cycle of the UCMR, USEPA published the second drinking water CCL 
(CCL2) in 2005. The list carried forward 51 of the original 60 contaminants, and 
9 were removed because sufficient data were collected and indicated that further regu-
lating action was not required. In addition to the CCL2 list, the USEPA published 
the UCMR2, which required monitoring of 26 contaminants.

The third CCL (CCL3) was published as a draft in February 2008 and was finalized 
in 2009. After evaluating approximately 7,500 potential contaminants based on occur-
rence, production, and toxicology, an expert panel under the direction of the National 
Research Council (NRC), National Drinking Water Advisory Council (NDWAC), 
and Science Advisory Board (SAB) helped USEPA systematically narrow down the list 
of potential contaminants in the CCL3 to 104 chemicals and 12 microbiological con-
taminants. UCMR3 was proposed in February 2011. When it is finalized, this rule will 
require monitoring of 30 contaminants during the 2013–2015 time frame.

Many of the contaminants on the CCL and monitored in the UCMR can be 
effectively removed using activated carbon. Consequently, should any of them be 
regulated either individually or as a class of contaminants in the future, activated 
carbon will become an important part of the process train for many utilities.

Positioning for Future Regulations
The continued pressure to improve water quality is mounting as source waters are 
challenged with a variety of micropollutants. These contaminants include those being 
detected because of improved analytical methods and those being introduced into 
source waters at higher concentrations, such as personal care products and pharmaceuti-
cally active compounds. Although effective for reducing concentrations of these micro-
pollutants, chemical oxidation does not convert them into carbon dioxide and water, 
and it is often unknown what compounds form in their place. Therefore, true removal 
processes are being revisited with renewed vigor. Membrane processes are improving, 
but only higher-pressure options such as nanofiltration and reverse osmosis can address 
most of these micropollutants. The following emerging issues are likely to affect utility 
strategies for using activated carbon in their treatment systems.
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MTBE and Perchlorate
Both MTBE (methyl-tert-butyl-ether) and perchlorate continue to gain public inter-
est and deserve more scrutiny. As two of the original contaminants on the CCL in 
March 1998, MTBE and perchlorate have undergone UCMR monitoring to deter-
mine the viability of regulating the chemicals or removing them from the list.

In UCMR monitoring of more than 3,400 systems, MTBE was detected in only 
0.5 percent of the systems, and perchlorate was detected in nearly 4.5 percent of 
samples. It is still unclear whether the MTBE concern is in localized regions or wide-
spread throughout the country. It is very likely that if MTBE detections are localized, 
the monitoring would spark state regulation rather than federal. While the USEPA is 
still in the process of revising its MTBE risk assessment, California has set an enforce-
able standard of 14 μg/L for MTBE. Because perchlorate is more widespread, it is 
more likely to warrant federal regulation.

Endocrine Disrupting Compounds (EDCs) 
and Pharmaceuticals
Pharmaceuticals, personal care products, and some household compounds are starting 
to appear in drinking water systems around the United States and in Europe. Some 
of these compounds are known to be endocrine disrupting compounds (EDCs), but 
their significance in drinking water is still not clear. Future monitoring and testing 
are needed to determine which of these compounds, if any, pose a threat to human 
health and at what dose. At that point, monitoring water systems for such compounds 
and evaluating ways to remove the compounds from the water may be necessary.

Nitrogenous Disinfection By-Products
The potential exists for future regulation of nitrogenous disinfection by-products 
(N-DBPs). Many N-DBPs can be found in treated drinking water; however, the most 
common ones include the various species of nitrosamines, particularly N-nitrosodi-
methylamine (i.e., NDMA) and halonitromethanes. Six of the nine possible nitro-
samines are currently included in the CCL3 list. Based on the results of UCMR2 
monitoring, NDMA is the most commonly occurring nitrosamine in drinking water. 
Because of the significant occurrence and the associated high carcinogenic potency 
of NDMA, it is anticipated that USEPA will consider developing a regulation for 
NDMA in the near future.

Carcinogenic Volatile Organic Compounds (cVOCs)
Under the auspices of six-year review, USEPA is currently reviewing the standards for 
trichloroethylene (TCE) and perchlorethylene (PCE). With USEPA’s strategic direc-
tion to regulate contaminants by groups, USEPA is considering the revised TCE/PCE 
standards in a combined regulation for carcinogenic VOCs. Eight different cVOCs 
are currently regulated, and USEPA is considering regulating up to eight more in 
the group of cVOCs. A group regulation for cVOCs is expected to be proposed in 
2013. Although the regulatory limits for specific VOCs are not known at the time 
of preparing this book, it is widely anticipated that the current regulatory limits for 
TCE and PCE will be lowered from the current limits of 5 μg/L. The existing limits 
were based on the limits of the analytical techniques available at the time; however, 
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because analytical methods have been refined, lower detection limits are feasible com-
pared to when the first VOC regulations were developed.

Activated carbon is the most widely accepted technology used to adsorb many of 
the organic compounds of concern. Many water utilities around the world are cur-
rently using activated carbon for removal of Natural Organic Matter (NOM), Syn-
thetic Organic Chemicals (SOCs), and taste-and-odor compounds. It also helps with 
N-DBPs because systems that lower their TTHM and HAA formation potential are 
less likely to use chloramine, thereby avoiding formation of N-DBPs.

Public Health Protection and Customer Confidence
The state and federal drinking water regulations that provide legally enforceable stan-
dards are the foundation for a water utility’s public health commitment to its custom-
ers and the public. However, meeting the standards does not result in zero risk; rather, 
the standards are based on peer-reviewed science, including data on how often the 
regulated contaminant occurs in the environment, how humans are exposed to it, the 
health effects of exposure, and cost considerations. A water system can elect to pro-
vide treatment to a quality higher than that required by a standard. However, most 
systems find it difficult to obtain the financial resources that may be needed to pro-
vide treatment levels above those required to comply with state and federal standards. 

Science is continually identifying the presence of additional chemicals in the 
drinking water supply, often in minute concentrations. While evidence is lacking 
that many of these pose a significant threat to public health, customers may become 
concerned at the presence of these compounds in their water supply, especially when 
reported by various media outlets. Because we are in an era of information overload, 
multitasking, and sound bites, few people have the time, desire, or even sufficient 
technical expertise to fully examine and form their own educated opinion on all of 
the issues and challenges facing them today. Hence, opinions are often based on per-
ceptions formed by instincts and input received from a variety of sources. 

Much of the media only focus on water issues during droughts, floods, proposed 
rate increases, reported failure, inefficiencies, or health emergencies. Seldom is there a 
positive story of how well a water utility is performing, the quality of life it supports, 
or the health protection it is providing. With most of the media information report-
ing the negative, it is understandable that many customers are biased with negative 
perceptions and concerns about the quality of their water. 

To counter these negative perceptions, it is critical for utilities to provide their 
customers with outstanding customer service and to become trusted partners in the 
goal to protect public health. During a Gallup Organization’s Drinking Water Cus-
tomer Satisfaction Survey for the USEPA of 1,000 households nationwide in 2002, 
general drinking water consumer knowledge and public confidence with information 
sources were assessed. Findings from the survey demonstrated that Americans recog-
nize the importance of receiving information on aspects of their drinking water and 
value being informed. This accentuates the need for honest, unbiased information 
reaching the customer. Another way for utilities to demonstrate their commitment 
to understanding customer concerns is to provide additional treatment barriers for 
unregulated contaminants such as micropollutants, taste- and odor-causing (T&O) 
compounds, or aesthetic issues. However, the decision to implement additional treat-
ment must be sensitive to the ability of the community to afford the increased level 
of treatment. 
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The bottom line is that while most of our water treatment systems do a good job 
with the technologies they have in place, a broad spectrum of chemicals in a water 
supply remain that are not being removed or reduced to the degree they could be by 
using activated carbon technologies. Although implementation of GAC treatment 
technologies costs money and will result in increased water rates, implementation 
needs to be considered in the light of improved public health protection. The current 
economic conditions may inhibit the ability to incur these costs; however, the value 
should be considered in strategic long-range planning.

Sustainability Considerations
It is sometimes thought that the use of a GAC treatment technology would result 
in a significant environmental burden. This needs to be considered in light of other 
options that could be used to achieve a desired treatment effect. In an effort to reduce 
the environmental burdens associated with producing drinking water, many water 
utilities have begun evaluating the sustainability of potential treatment scenarios 
prior to implementation. As a water utility evaluates the potential use of various pro-
cesses to reduce disinfection by-products, one approach to assessing sustainability is 
a life-cycle assessment (LCA). LCA, which is often referred to as cradle-to-grave, is a 
systematic approach that follows the International Organization of Standardization 
(ISO) 14040 standard to quantify potential environmental burdens of a product or 
process over its lifetime.

Appendix A contains an example illustrating the use of LCA to evaluate the envi-
ronmental impacts of typical processes to reduce DBPs. Three treatment technology 
scenarios were evaluated in the example: (1) GAC filter adsorbers, (2) GAC post-filter 
contactors, and (3) enhanced coagulation followed by disinfection using chloramines. 
In the appendix A example, no single scenario had significantly lower results across 
all LCA categories and sustainability measures analyzed, challenging the thought that 
GAC results in a significant environmental burden.

Concerns With Activated Carbon
Despite its merits, activated carbon has yet to be accepted as a “baseline” process 
in water treatment. Nevertheless, the USEPA recognized the significant benefits of 
activated carbon in its seminal 1986 Amendments to the Safe Drinking Water Act 
and chose GAC as a best available technology (BAT) for treating a suite of chemical 
contaminants. Since that time, some water purveyors have chosen to implement GAC 
as a treatment technique, while others have found different and often less expensive 
ways to meet federal and state water quality requirements. The use of GAC treat-
ment is expensive, both in initial capital cost as well as in on going operational costs 
associated with reactivating and replacing the media. The information in this book 
describes methods and techniques to minimize these costs. The cost of GAC treat-
ment should be considered in light of the benefits accrued by significant removal of a 
broad spectrum of organic contaminants from a water supply and the ability to fur-
nish customers with a water quality that not only meets current regulations but also 
reduces risks that may result from currently unregulated contaminants and the risks 
of unintended consequences that may be associated with other treatment methods. 
The end result is the ability to furnish customers with a very high-quality water that 
is likely to improve their quality of life and protect human health.
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Book Organization
Many books and book chapters have been written on activated carbon treatment. 
Most focus on removal mechanisms and capabilities, with some discussion of process 
approaches and applications. This book puts the fundamentals of activated carbon 
treatment, adsorption applications, and design of systems in the context of today’s 
and tomorrow’s water quality concerns, presenting the reader with a holistic view of 
the role of activated carbon in the water treatment process. 

The intent of the book organization is to serve the needs of various water utility 
leaders, managers, and professionals; water treatment scientists and engineers; and 
water utility consultants in three distinct areas related to planning for and designing 
activated carbon systems:

Part 1, Activated Carbon Adsorption Technologies, covers fundamentals and 
is targeted at assisting engineers and students who will use the book to gain 
a basic understanding and knowledge of activated carbon technologies for 
drinking water technologies.

Part 2, Adsorption Applications, is for those who will benefit from 
approaches to planning the use of activated carbon treatment. In addition, the 
numerous case studies presented in part 2 demonstrate how and where acti-
vated carbon has been successfully implemented to solve specific water quality 
challenges.

Part 3, Design and Procurement of Activated Carbon Systems, provides prac-
tical approaches to designers and system operators for effective and efficient 
design and use of activated carbon technologies as well as strategies for procur-
ing and implementing the systems.

To address the concerns of sustainability related to the reactivation process, the 
authors included an appendix on sustainability, illustrating the full life-cycle assess-
ment of activated carbon compared to other options for reducing TOC and complying 
with the Stage 2 D/DBP Rule. A similar process could be used to evaluate removal of 
micropollutants, comparing activated carbon to technologies such as reverse osmosis 
membranes and advanced oxidation processes using ozone.

Seventeen case studies comprise appendix B at the end of this book. These case 
studies will be useful to those readers seeking further practical information and expe-
rience from others using activated carbon technologies to improve the quality of their 
drinking water.

The book is not intended to be a textbook, although instructors can use portions 
of it to give students information on the basic mechanisms of the technology and 
practical guidance for training them as practicing engineers. It is assumed that dif-
ferent readers of the book will seek out relevant sections of the book as their needs 
dictate. Consequently, the book is written such that each of the three parts could be 
useful for a given audience without detailed study of the remainder.





xxxiii

List of Abbreviations 
and Acronyms

AC activated carbon
AOC assimilable organic carbon
AOP advanced oxidation process
AWWA American Water Works 

Association
BAC biologically enhanced activated 

carbon
BAF biologically active filter
BAT best available technology
BDOC biodegradable dissolved organic 

carbon
BOM biodegradable organic matter
BTEX  benzene, toluene, ethyl benzene, 

and xylene
BV bed volume
BWWB Water Works Board of the City 

of Birmingham
CAP Central Arizona Project
CCL Contaminant Candidate List 
CCL2 second Contaminant Candidate 

List
CCL3 third Contaminant Candidate List
CFSTR continuous flow stirred tank 

reactor 
CGTF Central Ground Water Treatment 

Facility
CIP capital improvements program
CLSA closed-loop stripping analysis
CM construction manager
CMBR completely mixed batch reactor
CMWC Consolidated Mutual Water 

Company
CSO combined sewer overflow
cVOCs carcinogenic volatile organic 

compounds 
D/DBP Disinfectants and Disinfection 

By-products
DBP disinfection by-product

DDT dichlorodiphenyl trichloroethane
DHS Department of Health and Safety 

(California)
DOC dissolved organic carbon
DOM dissolved organic matter
EBCT empty bed contact time 
EDC endocrine disrupting compound
EfOM effluent organic matter
ESWTR Enhanced Surface Water 

Treatment Rule
EMT external mass transfer 
GAC granular activated carbon
GC-MS  gas chromatography and mass 

spectrometry
GCWW Greater Cincinnati Water Works
HAA5 sum of five haloacetic acids
HLR hydraulic loading rate
HNM halonitromethanes
HOCs hydrophobic organic compounds
HSDM  homogenous surface diffusion 

model
IAST ideal adsorbed solution theory 
IMT internal mass transfer 
ISO International Organization of 

Standardization 
LCA life-cycle assessment
MCL maximum contaminant level
MF microfiltration
MIB 2-methylisoborneol
MIEX® magnetic ion exchange
MSDBA mulitstage diffused bubble 

aeration
MTBE methyl-tert-butyl-ether
MTZ mass transfer zone 
N-DBPs nitrogenous disinfection  

by-products
NDMA N-nitrosodimethylamine
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NDWAC National Drinking Water 
Advisory Council

NJDEP New Jersey Department of 
Environmental Protection

NOM natural organic matter
NRC National Research Council
O&M operations and maintenance
OTC  odor threshold concentration
PAC powdered activated carbon 
PAH polycyclic aromatic hydrocarbon
PCB polychlorinated biphenyl
PCE perchlorethylene
PD-RSSCT proportional diffusivity 

RSSCT
PFOA perfluorooctanoic acid
PFR plug flow reactor 
PhAC pharmaceutically active compound
PPCP pharmaceuticals and personal care 

products
PSDM  pore and surface diffusion model
pzc point-of-zero-charge
RSSCT rapid small-scale column test
SAB Science Advisory Board

SCADA  supervisory control and data 
acquisition

SDS simulated distribution system
SDWA Safe Drinking Water Act
SOCs synthetic organic chemicals
SUVA specific ultraviolet absorbance
T&O taste- and odor-causing
TCE trichloroethylene 
TDS total dissolved solids
TOC total organic carbon 
TTHMs total trihalomethanes 
TTHMFP TTHM formation potential
UCMR Unregulated Contaminant 

Monitoring Rule 
UF ultrafiltration
USEPA United States Environmental 

Protection Agency
USGS US Geological Society
UV ultraviolet
UVA ultraviolet absorbance
VOCs volatile organic  compound
WQMP Water Quality Master Plan
WTP water treatment plant
WWTP wastewater treatment plant


